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Abstract. A simple effective procedure (MNP) for finding equilibrium tetragonal and hexagonal states
under pressure is described and applied. The MNP procedure finds a path to minima of the Gibbs free
energy G at T = 0 K (G = E + pV , E = energy per atom, p = pressure, V = volume per atom) for
tetragonal and hexagonal structures by using the approximate expansion of G in linear and quadratic
strains at an arbitrary initial structure to find a change in the strains which moves toward a minimum
of G. Iteration automatically proceeds to a minimum within preset convergence criteria on the calculation
of the minimum. Comparison is made with experimental results for the ground states of seven metallic
elements in hexagonal close-packed (hcp), face- and body-centered cubic structures, and with a previous
procedure for finding minima based on tracing G along the epitaxial Bain path (EBP) to a minimum; the
MNP is more easily generalized than the EBP procedure to lower symmetry and more atoms in the unit
cell. Comparison is also made with a molecular-dynamics program for crystal equilibrium structures under
pressure and with CRYSTAL, a program for crystal equilibrium structures at zero pressure. Application
of MNP to the elements Y and Cd, which have hcp ground states at zero pressure, finds minima of E at
face-centered cubic (fcc) structure for both Y and Cd. Evaluation of all the elastic constants shows that
fcc Y is stable, hence a metastable phase, but fcc Cd is unstable.

PACS. 64.60.My Metastable phases – 71.15.Nc Total energy and cohesive energy calculations – 62.20.Dc
Elasticity, elastic constants

1 Introduction

Modern band-structure programs, such as the WIEN pro-
grams [1], can find the total energy of arbitrary crystals
with a moderate number of atoms in the unit cell. Know-
ing the total energy as a function of structure provides a
first-principles theoretical procedure for determining the
stable structures (which include metastable structures)
that a given set of atoms can form. The range of such
determinations has been greatly expanded by introduc-
tion of finite pressures p, which can substantially change
the material properties and can make different phases the
ground state. The equilibrium structures of these phases
at p can be found directly as functions of p by minimizing
the Gibbs free energy G = E + pV at T = 0 K with re-
spect to structure (E = energy per atom, V = volume per
atom). Reasons are given in [2] why the procedure based
on minimizing G at constant p is more accurate than the
usual procedure of minimizing the internal energy E at
constant volume: a principal reason is that the equation
of state p(V ) is not needed.

To find the equilibrium structures over the great
range of pressures now available experimentally (to sev-
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eral megabars) it is desirable to have a fast, reliable pro-
cedure that automatically finds the structure at each p.
The program MNP (for minimum path) is designed for
that purpose. We show that it is accurate in finding lat-
tice constants, efficient in requiring only a few structural
trials and reliable in rarely failing to find the minima.
The present version considers structures with two struc-
tural degrees of freedom, including the important cases of
tetragonal, body-centered tetragonal, hexagonal, hexago-
nal close-packed, omega, diamond and trigonal structures.
Based on current experience, expansion to lower symme-
tries and more atoms in the unit cell seems straightforward
with good prospects of success.

The MNP procedure is presently tested against exper-
imental structures for seven metallic elements with hcp,
fcc (face-centered cubic) and bcc (body-centered cubic)
ground states. It is also compared with the procedure used
previously [3] based on the epitaxial Bain path (EBP) to
show their similarities and differences. Both procedures
can find structures stable against deformations that pre-
serve tetragonal or hexagonal symmetry, but the struc-
tures may be unstable against deformations that break
those symmetries. Hence each minimum is tested for sta-
bility against all deformations by evaluating the elastic
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constants and applying the appropriate stability condi-
tions. Application is made by both procedures to the el-
ements Y and Cd (which have hcp ground states) in bct
structure. We observe that the MNP procedure is com-
pletely automated and is more easily generalized to struc-
tures with less symmetry and more atoms in the primitive
unit cell than the EBP procedure.

We also compare MNP with molecular dynamics (MD)
techniques, which can also find equilibrium states of pe-
riodic lattices under pressure when modified to work at
finite pressure and to allow changes in cell structure [4];
the MD techniques are not suitable at low temperatures
because the atoms follow classical orbits, whereas MNP is
all quantum-mechanical. The success of MNP in finding
equilibrium states of two-parameter structures by a few
curvature-controlled jumps suggests that the generaliza-
tion to less symmetry and more atoms in the unit cell will
also succeed.

We also compare MNP with the CRYSTAL pro-
gram [5], which uses a similar mathematical procedure.
However, MNP has much simpler operations, since it is
designed for simpler systems.

The formulation and application of the automatic pro-
cedure MNP are in Section 2. Comparisons of the MNP
procedure with the EBP, the MD and the CRYSTAL pro-
cedures are in Section 3. Discussion of the significance of
the MNP procedure and of the structural and elastic re-
sults for Y and Cd are in Section 4.

2 Automatic path MNP to free energy
minima

For a given set of atoms and a given structure, i.e., spec-
ification of the unit cell and positions of atoms in the
cell, we mean by a state the self-consistent solution of the
Kohn-Sham equations, supplemented by corrections to the
electron-electron interactions beyond the local-density ap-
proximation [6]. A state is said to be in equilibrium at p if
there are no stresses present in addition to p, correspond-
ing to vanishing of the gradient of G as a function of struc-
ture. Minima of G in tetragonal or hexagonal structure
have vanishing additional stress, but to prove static sta-
bility the states must be tested against deformations that
break the symmetries of those structures. States stable
against all small deformations, which includes metastable
states, can be called phases. The calculations here will find
tetragonal or hexagonal minima, but are for rigid lattices;
they neglect zero-point and temperature vibrations and
are not tested for dynamical instabilities.

Hence the computational problem of finding stable
states in tetragonal or hexagonal structure reduces to find-
ing first the minima of the Gibbs free energy G, which
equals E at p = 0, as a function of structure and then
evaluating elastic constants at the minima. For brevity,
we will limit the description to the case of tetragonal Bra-
vais lattices (usually bct). For such lattices G is a function
of a, the side of the square cross section, and c, the height
of the unit cell. We therefore seek the minima of a com-
putable function G(a, c). The MNP procedure for finding

minima uses the first terms of the Taylor expansion of the
free energy density G/V in any given state in powers of
the strains in the form

δG(a, c)
V

∼=
3∑

i=1

ci εi +
1
2

3∑

i,j=1

cij εi εj. (1)

In (1) the εi, i = 1, 2, 3 are the tetragonal strains, ε1 =
ε2 = δa/a, ε3 = δc/c, the ci are the components of the
strain gradient of G and give the (usually) anisotropic
additional stress added to p in the crystal in the given
state, and the cij ’s can be interpreted as elastic constants
in a crystal under p plus the applied stress given by the ci.
The strains ε4, ε5, ε6 break tetragonal symmetry, hence
are omitted.

For tetragonal symmetry we always have

ε1 = ε2, c1 = c2, c11 = c22, c13 = c23 (2)

and (1) takes the form

δG(a, c)
V

= 2 c1 ε1 + c3 ε3 + (c11 + c12)ε21

+
c33

2
ε23 + 2 c13 ε1 ε3

≡ 2 c1 ε1 + c3 ε3 + f(ε1, ε3), (3)

where f is a quadratic form in the strains ε1 and ε3.
At an initial arbitrary tetragonal state, we evaluate

the coefficients in (3). Five independent choices of ε1 and
ε3 give five strained structures (a + δa, c + δc) for which
five values of δG are calculated; then (3) gives five linear
equations for c1, c3, c11 + c12, c33 and c13.

We now must consider two cases. In Case 1 the func-
tion f(ε1, ε3) is a positive definite form [f(ε1, ε3)/ε21 has
complex roots for ε3/ε1]. Then we can find the minimum
of G in (3) by putting

1
V

∂δG

∂ε1
= 2 c1 + 2 (c11 + c12) ε1 + 2 c13 ε3 = 0, (4a)

1
V

∂δG

∂ε3
= c3 + 2 c13 ε1 + c33 ε3 = 0. (4b)

Solution of the linear equations (4) for ε1 and ε3 gives a
state for which G would be a minimum if (3) were exact.
Since the expansion of δG will usually have significant
terms with higher powers of ε1 and ε3 than the second
power, the strained state will usually not be the exact
minimum, but should be nearer the exact or true minimum
than the initial state. Hence usually the calculation needs
to be iterated, which requires recalculating the ci and cij .
The procedure continues until the calculation is converged
to a preset convergence criterion on the magnitudes of c1

and c3.
In Case 2 the quadratic form f(ε1, ε3) in (3) is not

positive definite, which occurs when

2 c2
13 > c33(c11 + c12) (5)
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Table 1. Comparison between MNP results and experiment. Lattice constants a and c (in bohr) of selected elements with
different ground-state structures (hcp=hexagonal close-packed; fcc = face-centered cubic; bcc=body-centered cubic) as cal-
culated with the MNP procedure and as determined experimentally [20]. The column “Error” lists the percentage difference
(theory minus experiment). For fcc materials a and c are the parameters of the corresponding body-centered tetragonal unit
cell (c/a =

√
2).

Element Structure a c

MNP expt. Error MNP expt. Error

Mg hcp 6.014 6.065 −0.8% 9.810 9.846 −0.4%

Ti hcp 5.530 5.577 −0.8% 8.861 8.852 +0.1%

Cu fcc 4.840 4.830 +0.2% 6.823 6.831 −0.1%

Mo bcc 5.983 5.947 +0.6% — — —

Rh fcc 5.141 5.083 +1.1% 7.254 7.189 +0.9%

Pd fcc 5.283 5.199 +1.6% 7.402 7.352 +0.7%

Ag fcc 5.530 5.459 +1.3% 7.783 7.722 +0.8%

and f(ε1, ε3)/ε21 has real roots for ε3/ε1. Then values of
ε3/ε1 exist which make the quadratic form negative. The
minimum of f(ε1, ε3)/ε21 as a function of ε3/ε1 will be neg-
ative and gives the direction of change of ε1 and ε3 that
will most rapidly reduce E. At the minimum

ε3
ε1

= −2 c13

c33
. (6)

Then (6) gives the direction of change of ε1 and ε3 to re-
duce G and steps are taken in that direction until a min-
imum of G is reached. There must be a minimum since G
cannot go below the ground state at p. The test for posi-
tive definiteness is then repeated with the cij at the new
minimum, which will be closer to the true minimum in
both a and c than the initial state. Case 2 is iterated until
Case 1 occurs and then is iterated to convergence of c1

and c3 to small values.
The MNP procedure has been implemented in a com-

puter program which finds the minima. We have tested
the program on the ground states of several metallic ele-
ments at zero pressure. In each case the procedure consists
in choosing an arbitrary initial state and testing how close
the final state found by the program is to the known exper-
imental data. In these tests the total-energy calculations
were done with a rather small number of k-points in the
Brillouin zone (mostly 2000) in order to limit the overall
computer times. The results are shown in Table 1. The
agreement between MNP results and experimental data
is good, being within less than 1% with three exceptions,
where agreement is within less than 2%.

A possible concern about accuracy is whether dif-
ferences in the number of plane waves used in the ex-
pansion of the interstitial wave function produces signif-
icant changes in the equilibrium structures. Corrections
for these differences, known as Pulay corrections, are im-
portant for pseudo-potential calculations, which are made
entirely in a plane-wave basis. All-electron APW calcula-
tions are much less sensitive to those differences, and Pu-
lay corrections have not been incorporated in the LAPW
band-structure programs. A direct test of the sensitiv-
ity has been made here by repeating calculations of the
equilibrium structure of Cu with different numbers of
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Fig. 1. Tetragonal states of cadmium. Top panel: Epitaxial
Bain path c(a) (left ordinate) and energy along the EBP E(a)
(right ordinate). The energy minima are (in bohr units) at
a = 6.03, c = 8.50 for the fcc phase, and at a = 7.52, c =
5.58 for the bct structure. A and B mark the points at which
the curvature in the energy curve changes sign from concave
upward to convex upward. In the range of a between the two
vertical dotted lines the structure is unstable (see text). Bottom
panel: Paths to the minima of E starting from several initial
states as found with the MNP procedure. The initial states
are indicated by open circles, the final states by full circles.
The solid (dashed) lines between X points are Case 1 (Case 2)
stages (see text).

plane waves. The differences in equilibrium structure us-
ing RmtKmax = 7, 8, 9, which changes the number of plane
waves (proportional to the cube of RmtKmax) by more
than a factor of 2, are small (from 0 to 0.45%).

In general, different initial states can lead to different
minima. In Figure 1 (bottom panel) the paths to the min-
ima of E at p = 0 for bct Cd starting from several initial
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Fig. 2. Tetragonal states of yttrium. The description is the
same as in the caption of Figure 1, except that for Y the energy
minima are (in bohr units) at a = 6.78, c = 9.56 for the fcc
phase, and at a = 7.89, c = 7.11 for the bct structure.

states (open circles) are shown. The solid lines between
X points are Case 1 stages; at each X the ci, cij are re-
evaluated; the dashed lines are made up of Case 2 steps
— terminating in an X at a new minimum in a particular
direction. Two true minima of E (full circles) are found,
and can then be refined by adding a stage with stronger
convergence criteria on the E calculation. The same MNP
procedure is applied to Y in Figure 2.

The outstanding feature of these results with the MNP
is that the program succeeded in finding a minimum for
all the assumed initial structures, which were chosen to
cover several directions. Moreover, the greatest number of
stages required was 7 and the average was 4 to 5. The
termination values showed a scatter of 1 to 2%, but are
functions of the convergence criteria (set at a precision of
10−4 Ry/atom for E and 10−4 Ry/bohr3 for c1 and c3),
which are easily made smaller. The maximum number of
steps in Case 2 was 16, the average about 8 (step size was
set at strains of 2%); about 1/4 of the stages were Case 2.

Apparently the topology of the energy function in a
two-dimensional structure space (coordinates a and c)
is favorable to a procedure which uses the local slope
and curvature to move toward a minimum. Retention of
this property of the topology seems plausible in higher-
dimension structure spaces, since the same interaction be-
tween atoms will control the energy function. Hence we
expect comparable success in dealing with generalizations
to less symmetry and more atoms.

3 Comparison of the MNP with the EBP,
MD and CRYSTAL procedures

Our previous procedure for finding minima of G as a func-
tion of structure was based on the EBP adapted to finite
p [3]. First derivatives of E with respect to strain in the
c direction are found as a function of c at one a (but not
second strain derivatives) in order to satisfy the bound-
ary condition (2/a2)(∂E/∂c)a = −p (for tetragonal struc-
tures). At each a one point is thereby found on the EBP,
which is followed continuously by steps δa until minima
of G on the EBP are found. At the minima the derivative
of G vanishes in two directions, hence vanishes in all di-
rections in a simple two-dimensional minimum, which is
a tetragonal equilibrium state at p in which all stresses
equal −p.

In contrast to this point-by-point tracing of a path on
the tetragonal structure plane to find the minima of G,
the MNP starts at an arbitrary, but plausible, tetragonal
structure, such as a body-centered cubic (bcc) or fcc struc-
ture using standard average atomic radii, and calculates
the first and second strain derivatives of G for that ini-
tial structure. The positive definiteness of the quadratic
form f(ε1, ε3) in (3) tells us if the initial structure is in the
“bowl” of rising G values with positive curvature around a
minimum. If the structure is in such a bowl, a stage can be
made consisting of a jump to the vicinity of the minimum
by choosing strains that cancel the linear terms, i.e., by
satisfying (4a) and (4b). The jump will come close to the
minimum if the bowl is well-approximated by an expan-
sion through quadratic terms in the strains. Iteration can
then converge the structure within the convergence crite-
ria in c1 and c3; more stringent convergence criteria in the
calculation of G can be introduced in the final stages to
get a more accurate minimum structure. At the minimum
we have then found a, c, E, G, c11 + c12, c13 and c33.

If the initial structure is not in such a bowl, a direc-
tion of change of the strains can be found from f(ε1, ε3)
that decreases G (the minimum of f(ε1, ε3)/ε21 gives the
ε3/ε1 that most rapidly decreases G); steps along that
direction must lead to a minimum closer to a true two-
dimensional minimum. The new minimum can then be
tested for positive definiteness and Case 1 or Case 2 pur-
sued. Thus each stage always has a successor; the sequence
terminates when a minimum is found within the conver-
gence criteria. The only failures we have found are when
the preset number of allowed stages is too small to reach
the minimum or the preset number of steps in a Case-2
stage is too small to reach the minimum in that direction.
Options to go on in these cases can be provided.

The EBP procedure finds the minimum structure, but
does not directly find any elastic constants. However we
note that at the a0, c0 of the minimum the slope of the
EBP and the curvature of G along the EBP are related to
the cij . Thus if we put the condition (1/V )∂E/∂ε3 = −p
into (3) (a condition which defines the EBP), we get (4b).
At the minimum of G, c3 = 0 and (4b) gives, just as in (6),

ε3
ε1

=
a

c

(
d c

d a

)

EBP

= −2 c13

c33
. (7)
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Table 2. Lattice parameters and elastic constants of tetragonal states of Y and Cd. a0 and c0 are the equilibrium parameters
of the tetragonal unit cell in Å units; V0 is the volume per atom in Å3; E0 is the energy per atom of each corresponding state
in Ry; the cij and C′ are elastic constants in Mb.

Yttrium Cadmium

fcc bct fcc bct

a0 3.586 4.177 3.192 3.981

c0 5.061 3.761 4.497 2.953

c0/a0 1.411 0.900 1.409 0.742

V0 32.53 32.81 22.91 23.40

E0 −6771.429606 −6771.422773 −11192.043122 −11192.043712

c11 0.562 −0.308 0.344 0.529

c12 0.309 0.805 0.015 0.273

C′ 0.126 −0.556 0.164 0.128

c44 0.311 −0.019 0.283

If we substitute ε3 in terms of ε1 from (7) in (3) and
differentiate twice with respect to a, we find [3]

1
c0

(
d2G

da2

)

EBP

= c11 + c12 − 2
c2
13

c33
, (8)

which is called Y ′ in [3], since it is an analogue of Young’s
modulus for epitaxial strain.

We note that there is a complementary path through
the minima in the tetragonal structure plane based on con-
dition (4a) (vanishing of stress in the a direction), called
the uniaxial Bain path (UBP) in [7]. From (4a) the slope
of the path at the minimum is

ε3
ε1

=
a

c

(
d c

d a

)

UBP

= −c11 + c12

c13
. (9)

Then (7), (8) and (9) determine c11 +c12, c13 and c33 with
the EBP and UBP procedures.

The EBP’s of Y and Cd c(a) are plotted above
the stages of the MNP in Figures 1 and 2, as well as
EEBP (a) [8]. We note that there are two points A and
B in EEBP (a) at which the curvature changes sign from
concave upward to convex upward. In the range of a be-
tween these points EEBP is convex and the structure is
unstable because the curvature

Y ′ ≡ c11 + c12 − 2
c2
13

c33
< 0, (10)

which is the condition that makes f(ε1, ε3) in (3) fail to
be positive definite. With MNP an initial state chosen in
this range produces a Case-2 situation.

The condition (10) is a failure of one of the four sta-
bility conditions [9] that determine stability of a tetrag-
onal structure. It is the only one that tests static sta-
bility without breaking the tetragonal symmetry, i.e., it

indicates tetragonal instability. The other three stability
conditions are

C′ =
c11 − c12

2
> 0, (11a)

c44 > 0, (11b)
c66 > 0. (11c)

The range of unstable states forms a multiply-connected
region in the tetragonal structure plane which separates
bowls of stability that surround the minima. The regions
of instability could be traced out by plotting additional
EBP’s at finite pressures [3].

The evaluation of all the elastic constants at the min-
ima of Y and Cd is in Table 2 [10]. For Y the fcc minimum
is shown to be stable, but the bct minimum is unstable
(C′ < 0). For Cd the fcc minimum is unstable (c44 < 0).
The stability of the bct state of Cd is uncertain because
numerical instabilities in the energy calculation gave con-
tradictory results for c66.

It is interesting to compare the MNP with the MD
technique extended to variable cell structure and finite
pressures [4]. In this extension the MD can be and has
been applied to the phases of elements, but has dif-
ferent strengths and weaknesses versus the MNP. The
MD calculates electronic structure and forces on the atoms
quantum mechanically, but the atoms then follow classical
orbits. Hence the MD is not suitable for accurate descrip-
tions of low-temperature equilibrium behavior. Quong and
Liu [11], who made a good first-principles calculation of
thermal expansion in some cubic materials, but rejected
the MD, remark: “First-principles molecular dynamics
methods such as the Car-Parrinello method can be used
to determine thermal properties expressed as statistical
averages. However since the ionic degrees of freedom are
treated classically these simulations are not valid at tem-
peratures comparable to or lower than the Debye temper-
ature. A further drawback is that the entropy, and hence
the free energy, cannot be expressed as an ensemble av-
erage.” In contrast to MD, the MNP is completely first-
principles quantum-mechanical and could readily add the
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generalized Debye evaluation of the zero-point vibrational
energy that is an intrinsic part of the zero-temperature
crystal, but is not present in the MD calculation. The
MNP could also add the vibrational Helmholtz free en-
ergy at finite temperature in the quasi-harmonic Debye
approximation to give accurate low-temperature equilib-
rium structures. The MNP technique evaluates properties
of the infinite lattice with the high accuracy of the WIEN
band-structure program, whereas MD finds statistical av-
erages over a finite number of atoms, which are subject to
fluctuations.

It is instructive to discuss the MD calculation of the
phase transition between hcp and bcc Mg [12] compared to
that phase transition found by the EBP (equivalent to the
MNP) [13]. The MD using a small cell at elevated temper-
ature starting from one phase generated the other phase
at the appropriate pressure in about 500 time steps, and
gave strongly fluctuating values of structural parameters.
The structural parameters at equilibrium were somewhat
distorted and the transition pressure was low by 30% com-
pared to the experimental value. More atoms in the MD
calculation would give more accuracy, at the expense of
increased computation time. In contrast the EBP calcu-
lation gave precise lattice constants in each phase sepa-
rately and a transition pressure close to experiment from
the crossing of Gibbs free-energy curves as functions of
pressure.

The MD calculation appears to be more computa-
tionally intensive than the MNP calculation, since it ap-
proaches equilibrium through many small damped time-
steps. At each time-step the self-consistent wave function
and atomic forces must be computed. The MNP makes a
sequence of jumps in structure controlled by the local free
energy curvature and slope as a function of strain. Rather
few jumps are needed to find the minimum, and the final
approach to such minima is second-order in the strains.

Finally we note that among the MD advantages are the
ability to handle many atoms in a unit cell at finite tem-
peratures and give plausible intermediate configurations
between an initial and final structure. The MNP calcula-
tion will grow rapidly with addition of more atoms in the
unit cell and the intermediate configurations apply just to
a single cell, i.e., are homogeneous, and are not related to
the path that an actual system would follow.

It is also of interest to compare MNP with the
procedure in the program CRYSTAL [5], which was
adapted from programs to find equilibrium structures of
molecules [14]. Both MNP and CRYSTAL are based on
the well-known mathematical procedure that uses second
derivatives of a function at an initial set of values of the
variables to find a new set of values at which the first
derivatives are smaller. If the function has positive curva-
ture at the initial variable, a change in the variable can be
found which reduces the first derivative. Iteration should
then lead to variable values at which the first derivatives
fall below a preset small value.

The most striking difference between MNP and CRYS-
TAL is that MNP, which is designed to solve a simpler
structural problem than CRYSTAL, is much simpler in

its operations and has much fewer operations. There are
also many differences in detail. We note the following:

• CRYSTAL at each stage n finds a new direction along
which to vary the structure from the structure at n
to search for a minimum; MNP at each stage n finds
a new structure which would be the minimum if the
quadratic expansion of G in the variables were exact.

• CRYSTAL uses structural variables about which there
is physical knowledge — bond lengths, bond angles, di-
hedral angles — which it orthogonalizes and tests for
linear dependence; MNP uses the natural variables of
crystal elasticity theory, the strains, so that all defor-
mations are free of rotations.

• CRYSTAL calculates accurate analytic first deriva-
tives in a Hartree-Fock formulation [15], which are used
to update the matrix of second derivatives (the Hessian
matrix) at each stage with elaborate formulas, hence
accurate value of the first derivatives are needed; MNP
calculates the first and second derivatives numerically
in a density-functional formulation with about 1% ac-
curacy at each stage, hence does not need accurate
values because the procedure is self-correcting.

• MNP has just two basic operations: (1) finding first
and second derivatives numerically and applying the
Hessian matrix to the vector of first derivatives to find
a structure closer to the minimum energy; (2) if the
Hessian matrix is not positive definite steps are taken
in the steepest descent direction to a one-dimensional
minimum and the process is repeated. CRYSTAL adds
operations on the coordinates, operations to update
the Hessian matrix from an initial estimate based
on a physical knowledge, and search operations for
one-dimensional minima. Some of these more elabo-
rate operations may be needed when MNP is mod-
ified to include more atoms in the unit cell. But
MNP has been proved adequate for the interesting
and important question of the existence of stable and
metastable phases of elements in several symmetrical
common structures of metallic elements under pres-
sure. In the simple case of low-dimensional structure
spaces MNP and its generalizations should be able to
locate all minima of G, i.e., all stable and metastable
phases. The search can be started with initial struc-
tures covering in the two-dimensional case a circle
around the physically reasonable region. Generaliza-
tion to lower-symmetry Bravais lattices should work
well with the same simple operations, and the addition
of temperature-dependent terms in the quasi-harmonic
Debye approximation to G is straightforward.

4 Discussion

Both the EBP and MNP procedures find the minima of
G(a, c), but may differ in the number of calculations of E
required (the heaviest part of the calculation) and they dif-
fer in basic approach. The EBP usually requires somewhat
fewer E values, but proceeds by a sequence of a values,
each of which requires several E calculations to locate the
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value of E at that a and gives one point on the EBP. The
EBP thus traces out a continuous path in the tetragonal
structure plane which leads to a two-dimensional mini-
mum of G. The process generates much information about
the energy surface which is not relevant to the minima.

The MNP procedure, in contrast to the EBP, does not
trace out a continuous path, but goes through a series of
controlled stages in which jumps are made to structures
closer and closer to the minima of G. At each stage deter-
mination of five coefficients requires five calculations of E.
The two procedures are comparable in efficiency for locat-
ing tetragonal minima. One advantage of the MNP is that
it is easily fully automated. Another important advantage
of the MNP is that it is readily generalizable in more ways
than the EBP.

Both procedures apply to both tetragonal and hexag-
onal structures, which have a two-dimensional structure
space and apply to arbitrary hydrostatic pressure by
searching for minima of the Gibbs free energy at zero tem-
perature. However, the MNP is immediately generalizable
to deal with structures of lower symmetry than tetragonal
or hexagonal symmetry and with more atoms in the unit
cell. The stages of the path to a minimum will take place
in a three-dimensional structure space for orthorhombic
Bravais lattices, in a four-dimensional structure space for
Bravais monoclinic lattices (coordinates a, b, c, γ) and
in a six-dimensional structure space for triclinic Bravais
lattices. In the primitive unit cell each additional atom
(which can be a different element) brings three additional
degrees of freedom in general, but fewer if the atom has a
symmetrical position.

The current MNP is thus the initial program in a se-
quence of generalizations. Now it can find stable states
(i.e., phases) at any p if they are tetragonal or hexagonal.
The generalizations should be able to find all the stable
states in n-particle cells, where n will probably be limited
to a small integer by computational capacity. We observe
that for each n, each element must have at least one stable
state at each p; the lowest of these is the ground state at
that p and the others are metastable phases. This array
of n-particle stable states of the elements is enriched by
finite pressure and by anisotropic stress. A large increase
in possible phases is produced by allowing the atoms for
n ≥ 2 to be different.

The elements Y and Cd were chosen to test the MNP
in tetragonal structure at p = 0 for two reasons: (1) be-
cause they have hcp ground states, but with different
elastic anisotropies [16], hence any stable tetragonal state
would be a new metastable phase, since it will have a
greater E than the hcp ground state; and (2) because
MNP might behave differently in crystals with different
elastic anisotropies. The close connection of hcp and fcc
structures because both can be ideally close-packed has
frequently found both the fcc and hcp structures stable
for either an hcp or fcc ground state, respectively (so we
expect a metastable phase for fcc Y and Cd). But if the fcc
state is unstable there must exist a new metastable Bra-
vais phase with one atom in the primitive unit cell with
symmetry less than tetragonal and energy above the hcp

ground state. Finding such metastable phases will be pos-
sible when the MNP is generalized to operate in structure
spaces up to six dimensions.

Both Y and Cd satisfy the general rule that transition
metals have one tetragonal equilibrium state with cubic
symmetry and one which is noncubic [3]. But Y and Cd
differ in that Y has a stable fcc phase (like Mg, Zr, Co),
but Cd has an unstable fcc equilibrium state (c44 < 0,
like Zn). The bcc and bct equilibrium states of Y are both
unstable; see Table 2. The bcc equilibrium state of Cd is
also unstable; the status of the bct equilibrium state of
Cd is uncertain, since the sign of c66 was not clearly es-
tablished. It seems significant that Cd and Zn are far from
ideal close-packing in their hcp ground states [the close-
packed (0001) planes are well-separated] and that the elas-
tic constant c44 of their fcc equilibrium states opposes slid-
ing on each other of close-packed (111) planes, which are
not well-separated in the fcc structure. However, hcp Y
is almost close-packed and shows almost isotropic elastic
behavior [17], hence may be expected to differ from Cd.

For Y, there is a previous theoretical calculation by
Min and Ho [17] of the energies of the bcc, fcc and hcp
structures as functions of volume per atom. Min and Ho
used a pseudopotential in the local-density approxima-
tion. They reported no numerical results, but from their
Figure 3 we can estimate the zero-pressure difference in
energy between bcc and fcc phases as 7.2 mRy, in good
agreement with the value 7.1 mRy found on the Y-EBP in
Figure 1. Since the elastic constants were not evaluated,
Min and Ho did not know that the bcc structure is un-
stable, that an unstable bct equilibrium state exists, and
that the fcc structure is stable. Since Y has an hcp ground
state, the fcc phase is necessarily a metastable phase.

The metastability of fcc Y found here makes this phase
a good candidate for experiments aimed at stabilization
by pseudomorphic epitaxy, as we have done for other ma-
terials [18]. Since the a parameter of fcc Y is 3.59 Å, a
rather large value, the choice of a suitable substrate (i.e.,
one with a small misfit to fcc Y) is somewhat limited. The
refractory metals Ta and W have large lattice parame-
ters, but their misfits of about 8 and 12% are probably
too large (in fact, using W{001} as a substrate we have
failed to achieve epitaxy), so that the only possible candi-
date seems to be Pb{001} (a = 3.400 Å, hence a misfit of
2.5%).

The EBP or the MNP procedure at finite pressure
could be applied to find the transition pressure from hcp
Y to fcc Y predicted by Min and Ho [17]. To be com-
plete the calculations would have to be extended to cover
the intermediate crystal phases found experimentally [20],
the sequence being hcp→ Sm-type→ dhcp→ fcc, and zero-
point energies should be included.
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